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SUMMARY 

Recently, with the advent of supercomputers, there has been considerable interest in the use of direct 
numerical simulation to obtain information about turbulent shear flow at low Reynolds number. This paper 
presents a pseudospectral technique to solve the full three-dimensional time-dependent Navier-Stokes and 
advection-diffusion equations without the use of subgrid-scale modelling. The technique has not been 
previously used for fully developed turbulent channel flow simulation and is based on methods applied in- 
other contexts. The emphasis of this paper is to provide a reasonably detailed account of how the simulation 
is done rather than to present new calculations of turbulence. The details of an algorithm for turbulent 
channel flow simulation and the grid and time step sizes needed to integrate through transient behaviour to 
steady state turbulence have not been published before and are presented here. 

Results from a Cray-2 simulation of fully developed turbulent flow in a channel with heat transfer are 
presented along with a critical comparison between experiment and computation. The first- and second- 
order moments agree well with experimental measurements; the agreement is poor for higher-order 
moments such as the skewness and flatness near the walls of the channel. Detailed information given about 
the effects of spatial grid resolution on a computed results is important for estimating the size of the 
computation required to study various aspects of a turbulent flow. 

KEY WORDS Turbulence Channel Heat transfer Spectral Numerical Simulation 

1. INTRODUCTION 

The principal theoretical problems of wall turbulence are to determine how turbulence is 
generated and sustained and to relate transport of momentum and scalar quantities to the 
fluctuating velocity field. In recent years considerable attention has been given to the discovery 
that turbulent flow in the viscous wall layer (0 < y+  < 30-40) contains a significant amount of 
coherent structure and that repetitive processes can be identified that may control turbulence 
production and transport processes. However, laboratory measurements of the fluctuating 
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velocity field have not provided enough information to link turbulence production and turbulent 
transport to turbulence structure. Furthermore, statistical correlations appearing in the transport 
equations for average quantities are unavailable since they involve pressure and spatial derivat- 
ives which are very difficult, if not impossible, to measure. The simulation of turbulent flow on a 
computer can provide, at each time step, the entire velocity, pressure and temperature fields 
simultaneously without interfering with the flow. All desired statistical quantities can be com- 
puted and time-dependent structural information is also made available. 

Numerical calculations of turbulent flow usually employ models in order to simplify the 
transport equations. The simplest models calculate average velocity or average scalar fields by 
using closure models for the statistical properties of the turbulent fluctuations. The large-eddy 
simulation (LES) approach solves the full three-dimensional time-dependent equations with a 
coarse grid and models the effect of the subgrid-scale turbulence on the resolvable scales.' - In 
the simple eddy or coherent structure modelling an attempt is made to model the organized 
quasi-periodic eddy structures in the viscous wall region of a bounded turbulent f l ~ w . ~ - ~  Direct 
numerical simulations (DNSs) which employ no simplification of the dynamic equations have 
only recently been performed for wall-bounded turbulent flows.7 - I 2  

The primary purpose of this study was to develop a direct numerical simulation of fully 
developed turbulent channel flow and passive heat transfer with the goal of studying wall eddy 
structure and its relationship to turbulence production and scalar transport. The two-dimen- 
sional channel was chosen because its geometric simplicity reduces the complexity of the 
numerical methods. In general, the dynamics of the turbulent flow field and the fluctuating 
temperature field are coupled. The thermal energy balance is coupled to the momentum balance 
through convection, and the momentum balance is coupled to the thermal energy balance 
through the temperature dependence of the fluid viscosity and density. However, for small 
temperature differences the influence of temperature on the physical properties of the fluid can be 
neglected and thus the momentum balance is decoupled from the thermal energy balance. 

The first direct numerical simulation of channel flow was that of Orszag and Kells.' They 
performed a study of the non-linear stages of the transition from laminar to turbulent channel 
flow. Pseudospectral methods that use Fourier series expansions in the spanwise and streamwise 
directions and Chebyshev polynomial series expansions in the normal direction perpendicular to 
the walls were used. The algorithm made use of a time-splitting method that involves three 
fractional steps for the computation of the non-linear term, the pressure term and the viscous 
term in the Navier-Stokes equations. The splitting method introduced an error in that viscous 
effects are not included in the computation of the pressure and, as a consequence, the continuity 
equation was not satisfied at the wall. Orszag and Patera' simulated turbulent flow in a channel 
by using the Orszag and Kells algorithm with a fully explicit Adams-Bashforth scheme to time 
advance the non-linear terms. The resolution in their simulation was 64 grid points in both the 
streamwise and spanwise directions and 65 grid points in the direction normal to the channel 
walls. The results obtained were not for steady state turbulence. The initial condition for their 
flow was a random perturbation of Poiseuille flow and they integrated in time until the average 
wall shear stress reached a maximum so that the flow was approximately stationary. The results 
that were presented were taken from the flow fields near the time when the wall shear stress had 
reached a maximum. 

The Orszag and Kells algorithm is satisfactory as long as it is used for high-Reynolds-number 
flows for which the behaviour at the wall is not critical. Marcusg developed a modification of the 
Orszag and Kells algorithm that incorporates viscous effects into the pressure and satisfies 
continuity at the walls. The Marcus modification involves the use of Green functions (capacitance 
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or influence matrix methods) to improve the implementation of the boundary conditions. It must 
be pointed out that, even with this modification, the flow field is slightly compressible at the end 
of each time step, since the operations used to carry out the evaluations of the pressure and 
viscous terms involve time-differencing errors; the error can be reduced with a smaller time step. 
Marcus used his algorithm to simulate Taylor-Couette flow (where for this problem the 
behaviour at the wall is critical to the entire flow field) and obtained excellent agreement with 
experimental measurements of wavy Taylor vortex flow. 

Moser and Moin'O developed a spectral method, following the lead of Leonard and Wray, l 3  to 
simulate curved turbulent channel flow. The velocity field was represented using vector functions 
that inherently satisfied the continuity equation and the boundary conditions. Satisfying continu- 
ity removed one degree of freedom. The pressure was then eliminated from the equations to leave 
only two dependent variables to be solved. Their direct numerical simulation used 128 x 65 x 128 
spectral modes and their results are in excellent agreement with other experimental and 
theoretical results. 

Kim et aLI2 simulated turbulent channel flow with a formulation, first discussed by Orszag and 
Patera,* that avoids time-splitting errors. Spectral methods using Fourier series expansions in the 
spanwise and streamwise directions and Chebyshev polynomial series expansions in the normal 
direction perpendicular to the walls were used. The Navier-Stokes equations were rewritten as a 
fourth-order equation for the normal component of the velocity and a second-order equation for 
the normal component of the vorticity. This was done by using the continuity equation and 
eliminating the pressure. This method is preferable to the time-splitting methods in that it satisfies 
continuity implicitly and requires less storage. The main disadvantage of this method is that it is 
considerably more complicated than the splitting methods; this may prove to be significant when 
other complications (e.g. non-Newtonian flow or wavy boundaries) are introduced. Their 
simulation was for a Reynolds number equal to 2800 (based on the bulk average velocity and half- 
channel height) and used 192 x 129 x 160 spectral modes. Their results were shown to agree with 
available experimental results reported in the literature, except for the higher-order moments 
such as the skewness and flatness near the channel walls. They also reported that their results 
agree with results on a coarser mesh of 128 x 129 x 128 and with the Moser and Moin" results 
obtained on a 128 x 65 x 128 grid. 

The technique used in the present study to solve the momentum balance is an adaptation of the 
Orszag-Kells approach to include the Marcus correction to the pressure. The velocity field is 
advanced in time with a fractional step approach that produces a velocity field that satisfies 
continuity exactly at both channel walls at the end of each time step. A similar approach to that of 
Circelli and M~Laughlin '~ is used to solve the thermal energy balance. The results to be 
presented are for fully developed turbulent flow in a channel having a half-width H equal to 
150 'wall' units (based on the kinematic viscosity and friction velocity) and a Prandtl number 
equal to These results are compared with the velocity measurements of NiederschulteI6 
and with temperature measurements reported in a series of articles by Corcoran, Page and 
co-workers." -I9 

The value of this paper is that it fully documents how a pseudospectral code can be used to 
simulate turbulent flow in a channel, enabling readers to develop their own codes and simulations 
or to use existing codes with an understanding of how they work. Emphasis is placed on issues 
associated with the calculation of a fully developed turbulent field. Of interest are the studies of 
the influence of spatial and temporal resolution of the start-up procedure and of the time needed 
to reach a stationary state. The results are particularly important in evaluating turbulence studies, 
being done in several laboratories with this code, that are now appearing in the literature. 
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2. GOVERNING EQUATIONS 

This time-dependent three-dimensional simulation predicts all three components of the velocity 
vector and the temperature as a function of time and all three spatial dimensions. The flow, which 
is driven by a constant mean pressure gradient, is for an incompressible Newtonian fluid of 
constant density, constant viscosity and constant thermal conductivity. The simulation assumes 
that body forces and viscous heating are negligible. The spatial vector (x, y, z) and the corres- 
ponding velocity vector (u, u, w) are shown in Figure 1 with the computational domain. The x- 
direction points downstream in the direction of the mean pressure gradient parallel to the walls, 
the y-direction points in the normal direction perpendicular to the walls and the z-direction 
points in the spanwise direction parallel to the walls. The computational domain is periodic in the 
streamwise and spanwise directions with corresponding periodicity lengths 1, and 1,. The 
distance between the channel walls is 2H. 

2.1. Momentum transport 

fluid with no body forces: 
The equation describing the model flow is the Navier-Stokes equation for an incompressible 

a V  1 P  -= -v  -vv-- v p + -  vzv ,  
at P P 

(2) v*v=o .  
These equations are solved with a spectral method that expands the velocity field in terms of 
truncated Fourier series and Chebyshev polynomial series. The convective term when represented 
by truncated Fourier series violates conservation of energy, leading to unconditional instability of 
the equations.20 In order to conserve energy, the convective term is rewritten using the following 
identity: 

v - v v =  - v  x w+$V(v-v), (3) 

w = v x v .  (4) 

where the vorticity vector is defined as 

The Navier-Stokes equation can then be written in the 'rotation' form 

I 
2H 

I 

aV 
- = v x w - v ~ + v v ~ v ,  
at 

Y. " 

I- 
W 

x x  

Figure 1. Computational domain 
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where x is the dynamic pressure head: 

P 
P 

7t =- + 4 v * v. 

The equation is made dimensionless using wall variables v,  the kinematic viscosity, and u+, the 
friction velocity, where 

Tw=p- . u*=p), :Iwa,* 
The Navier-Stokes equation then becomes 

-=v+ x w +  - v + n +  +v+%+, av + 

at+ 

(7) 

v+ ' V +  =o. (9) 
By doing a force balance on the channel, one obtains the following relationship for constant mean 
pressure gradient: 

Therefore (8) can be rewritten as 

a V  + 1 -=v+ x w +  -V+n+ +-e+ + V + 2 v + ,  
at+ H +  

The term p' is the fluctuating component of the pressure. Equations (9) and (1 1) are the equations 
that are solved numerically. 

These equations are subject to periodic boundary conditions in the streamwise and spanwise 
directions and the no-slip, no-penetration boundary condition is enforced at the channel walls: 

v +  (x+ + A: , y +, z+  + A;, t + ) = v+(x +, y +, 2 +, t + ), 

v +(x +, & H +, z +, t + ) = 0. 
(13) 

(14) 

The use of periodic boundary conditions is justified as long as A, and A, are large enough so that 
all two-point correlation functions become negligibly small at separation distances of A,/2 in the 
x-direction and 1,/2 in the z-direction. This indicates that all important length scales have been 
resolved. 

The initial condition for the hydrodynamics was a mean parabolic profile for laminar flow with 
random velocity fluctuations superimposed upon it. The streamwise and spanwise velocity 
fluctuations were specified by a random number generator and scaled to be of the order of one- 
hundredth of the mean velocity. The normal velocity fluctuations were then determined by 
satisfying continuity, (9). 

2.2. Heat transport 

The law of conservation of energy for an open, unsteady state system for a pure fluid of 
constant density and constant thermal conductivity flowing through a stationary volume is the 
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time-dependent three-dimensional advectiondiffusion equation with a source term: 

aT k P 
- = -V - VT+-V~T+---(D,, 
at PCP PCP 

The temperature is transformed using T=e-ay ,  since this allows (15) to be solved with 
homogeneous boundary conditions for the problem to be studied 

ae k P 
- = - v VB + av - ey + - v28  + -av. 
at PC, PC, 

Equation (16) is made dimensionless using wall variables v,  u* and t,, the friction temperature, 
where 

The energy balance equation then becomes 

1 Br 
at+ Pr Pr 

- v +  - V + O +  +a+v+ -e,+ +-v+2e+ +-a;, ae + -= 

where the Prandtl number Pr and Brinkman number Br are defined as 

PPCP4 Br=-. P r = P  PC 
k '  kqw 

(19) 

The heat production by viscous dissipation is assumed negligible compared to the heat transport 
by conduction. Thus the Brinkman number is set to zero: 

Equation (20) is the model equation for heat transfer and is subject to periodic boundary 
conditions in the streamwise and spanwise directions and homogeneous boundary conditions at 
the channel walls: 

e + (X + +A:, y +, + +A:, t + ) = e+ (x +, y +, +, t + 1, 
B+(x+, fH+,z+,  t+)=O. 

All quantities will be presented in wall units so the superscript '+' will be dropped for 
convenience throughout the remainder of this paper. 

The initial condition for the temperature profile was a mean conduction profile, 8=0 (or 
T= -ay). The heat transfer simulation was started after the hydrodynamic simulation had 
reached a stationary state, so it was not necessary to superimpose any temperature fluctuations 
on the mean profile. The turbulent velocity fluctuations quickly generated a turbulent 
temperature field. 

3. NUMERICAL ALGORITHM 

The velocity field is advanced in time from time step N to time step N +  1 using three fractional 
steps. At each fractional step the velocity field is subject to periodic boundary conditions in the 
spanwise and streamwise directions, (13). The no-slip, no-penetration boundary condition (14) is 
enforced in the third fractional step. 
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The first fractional step accounts for the non-linear convective term and the mean pressure 
gradient. These terms are evaluated with second-order accuracy in A t .  

1 -- -vxo+-ex .  
at H 

avN+ 113 

In order to reduce convective instability, the largest contribution to the 
subtracted out and treated implicitly using a Crank-Nicholson scheme. This 

Thus (23) becomes 

a v N +  113 av  1 a V  av 
at ax H ax ax + UN(y)-=v x o+-ex+ ON(y)-=f+ UN(y)-. 

convective term is 
term is modelled as 

The right-hand side of (25) is treated explicitly using an Adams-Bashforth scheme. This semi- 
implicit Adams-Bashforthxrank-Nicholson (ABCN) scheme is second-order-accurate in At. 

At the end of the first fractional step the streamwise velocity is non-zero at the wall because of the 
external pressure gradient and the fact that the step is inviscid. The other two intermediate 
velocity components are zero at the wall. 

The second fractional step accounts for the inviscid contribution of the dynamic pressure head 
term. An implicit Euler scheme is used which is first-order-accurate in A t .  

a v N + 2 / 3  a v N + 1 / 3  
V7CN+' -- --- 

at at 
or 

(27) v N + 2 / 3 = v N + 1 / 3 _ A t V a N + 1 .  

The pressure head term is evaluated by requiring that the velocity field after the second fractional 
step be divergence-free ('projection step'21). Taking the divergence of (27), we get upon rearrange- 
ment 

subject to 
aZVN+ 1 

(x, f H ,  Z, t)=- (x, f H , z , t ) - e , .  
a a N + l  

a Y  a Y 2  
The pressure equation is a linear inhomogeneous equation with inhomogeneous boundary 
conditions. Thus the solution can be divided into two parts: the first part satisfies the inhomo- 
geneous equation with homogeneous boundary conditions and the second part satisfies the 
homogeneous equation with inhomogeneous boundary conditions. The pressure head term is 
decomposed into the inviscid part ai and the viscous part a,: 

a = 71i + R,. (30) 
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The inviscid part of the pressure head satisfies the inhomogeneous equation with homogeneous 
boundary conditions and is solved for the second fractional step: 

an: + 1 

a Y  
(x, f H ,  z, t) = 0. 

At the end of the second fractional step, both the streamwise and spanwise components of the 
velocity are non-zero on the walls, once again because the effects of viscosity have not been 
included. The normal velocity component does vanish on the wall. 

The third fractional step accounts for viscous effects. The viscous part of the pressure head 
satisfies the homogeneous equation with inhomogeneous boundary conditions: 

v2nrrEJ + 1 = 0, (33) 

Equation (34) is satisfied if and only ifZ2 

V . V N + l ( X ,  fH,  2, t)=O. (35) 
Thus continuity is satisfied at the walls. 

An implicit backward Euler scheme is used for the viscous term which is first-order-accurate 
in At. Marcus’ tried a Crank-Nicholson scheme for the viscous term in his work but claimed it 
produced spurious oscillations. 

a v N  + 1 a v N  + 213 
-- -- + V V +  

at at  

Equation (36) is solved subject to 

v N + 1 ( x ,  f H , z , t ) = O .  (37) 
Note that the velocity at time step N + 1 appears in the boundary conditions, (34). Therefore (33), 
(34), (36) and (37) have to be solved simultaneously and for this purpose ‘IL, is expanded in a set of 
Green’s functions. 

Owing to the explicit treatment of the non-linear convective term, there is a CFL stability 
constraint on the size of the time step At: 

This condition was determined by computing the term on the right-hand side of (38) while 
varying At. We found that the integration quickly diverged once this quantity reached unity 
anywhere in the flow field. By decreasing At so that this term was kept less than unity, a stable 
integration was obtained. 

The heat transport equation is advanced in time from N to N + 1 using two fractional steps. At 
each fractional step the solution is subject to periodic boundary conditions in the spanwise and 
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streamwise directions, (21). The first fractional step accounts for the convective term. As for the 
time advancement of the velocity field, (26), and ABCN scheme is used in order to reduce 
convective instability. 

a p +  113 

= -v.VB+av-e,, 
at 

ax (39) 

The second fractional step accounts for the diffusion term. An implicit backward Euler scheme 
is used. 

or 

Equation (40) is subject to 

eN+l(X, * H ,  z, q=o.  (41) 
Note the similarity of (36) and (37) to (40) and (41). The same solution procedure is used for both 
sets of equations. 

4. SPECTRAL REPRESENTATION 

The transport equations (11)  and (20) are subject to periodic boundary conditions in the 
streamwise and spanwise directions. Because periodic boundary conditions are used in the x- and 
z-directions, the velocity, pressure head and temperature fields are expanded in terms of Fourier 
series in these directions. In order to obtain adequate resolution in the normal direction at the 
wall and to satisfy the rigid boundary conditions there, the y-variation of the velocity, pressure 
head and temperature fields is expanded in terms of Chebyshev polynomial series. Chebyshev 
polynomial expansions have rapid convergence properties at the boundaries and, unlike Fourier 
series expansions, do not exhibit the Gibbs phenomenon at the boundarie~.~~.  

N.42 - 1 N.12 - 1 N~ 
v(x,y,z,t)= 1 1 C i(l,n,m,t)exp 

I =  -Nxj2 m =  -N,/2 n = O  

The nth-order Chebyshev polynomial is defined as 

= cos (no), where 8 = cos- (43) 

The pressure head and temperature fields are similarly expanded. The representation of the fields 
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as v(x, y, z ,  t )  is termed ‘physical space’ and the representation as i(l, n, m, t )  is termed ‘spectral 
space’. 

A discrete set of grid points is introduced with 

h=O, 1,. . . 

j = O ,  1 , .  . . , N z - l ,  

Using (44), equation (42) can be rewritten as 

Note that the Chebyshev polynomial series can also be written as a Fourier series: 

with 

ii(l, 0, m, t ) = f ( l ,  0, m, t), ii(l, N,,  rn, t)=V(l, N, ,  m, t)  

and, for n # 0 and n # N,, 

ii(1, n, m, t)=ii(l, -n, m, t)=+?(Z, n, m, t). 

The coefficients of the series expansions are determined by forcing the series to be an exact 
representation of the corresponding field at the grid points and are computed from 

Since the velocity, pressure head and temperature fields are real functions, the corresponding 
coefficients of their series expansions are complex conjugate symmetric. Therefore only half of the 
spectral coefficients need to be computed and The summations required in (46) and (47) 
are performed by fast Fourier transform (FFT). 

The computation of the product of two functions represented by truncated Fourier series 
produces aliasing errors, whereby the energy of smaller wavelengths is misrepresented because 
large wave numbers are generated and these wave numbers are not orthogonal to the basis 
functions on the grid used in the calculations. The result is that the energies of the top half of the 
wave number spectrum contain spurious contributions. Aliasing errors are reduced by use of the 
‘two-thirds’ rule in the x- and z-direction~.~~ The top one-third of the wave numbers are zeroed 
and then the functions are transformed to physical space where the multiplication is carried out. 
Then the product is transformed back into spectral space. This occurs in the convective fractional 
step when the cross product of the vorticity and velocity fields is computed and when the dot 
product of the velocity field and the gradient of the temperature field is computed. 
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Interpolation from low grid resolutions to higher grid resolutions was done in spectral space. 
To interpolate from an N, x N, x ( N , +  1) grid to a N :  x N :  x ( N ; +  1) grid, where N , <  N : ,  
N , <  N :  and N , <  N ; ,  the following was used: 

i(1, n,m), where l<N,,n<N,,m<N,, 
otherwise. 

?(1, n, m)= 

5. SOLUTION PROCEDURE 

The spectral representations of the velocity, pressure head and temperature fields are substituted 
into the finite difference equations, reducing the problem from solving partial differential 
equations for the physical fields to solving ordinary differential equations for the spectral 
coefficients of the physical fields. 

5.1. Convective fractional step 

The term f i n  (26) is computed in physical space: 

f x  = uw, - ww, +--, f, = ww, - uwz, f,=uwy-uw,. (49) 
1 

H 

The vorticity field is first computed in spectral space. Then the vorticity and velocity fields are 
transformed to physical space using the FFT (46), and (49) is computed at the grid points 
(x,,, y,, z j ) .  The f-field is transformed to spectral space using the FFT (47). 

The term g in (39) is similarly computed in physical space: 

ae ae ae 
ax ay a2 

g= -U--u--w-+av.  

The gradient of the &field is computed in spectral space and transformed to physical space, 
where (50) is computed at the grid points. The g-field is then transformed to spectral space. 

The spectral expansions for the velocity and temperature fields are substituted into equations 
(26) and (39) and upon rearrangement one obtains 

* 

(52) 
a N +  1/3  = 8" +At@" -+aN- l) + At( zi10N(n)/l,)(2@+2/3 - 6N"N-5/3 ) 

1 +At(silUN(n)/A,) 

Equations (51) and (52) are solved explicitly for the velocity and temperature fields in spectral 
space (1, n, m) after the first (convective) fractional time step. (It is understood that all spectral 
fields are functions of (I, n, m) unless otherwise noted.) A total of 13 FFTs are computed in this 
fractional step using 55% of the CPU time (using Cray SCILIB routines CFFT2, CRFFT2 and 
RCFFT2). 
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5.2. Pressure fractional step 

into (31): 
The spectral expansions for the velocity and inviscid pressure head fields are substituted 

(53) 
="( I+2)iN+1/3(I, n, m)+-  2 N y  C ~ i ~ + ~ ' ~ ( I , p ,  m), 2<n<N,, 

At I ,  Az Hc,  p = n + l  
p+nodd 

where c,, = 2  and c, = 1 (n>O). The right-hand side of (53) can be computed directly. For 
notational convenience the ( I ,  m) dependence will be dropped and the right-hand side of (53) will 
be denoted byf(n)/Hz. Equation (53) can then be rewritten as 

N., N.. 

p3iir + (p) - n2 2 piF r + ( p )  - kc, ii? + (54) (n) = c, f (n) ,  2 < n < N,, 
n = n + 2  

where 

k = 4n2 H 2  (- 1' + m2 -). 
n: I: 

This linear system of equations can be converted into a nearly tridiagonal system of equations 
that are essentially diagonally dominant and are thus not ill-conditioned for inversionZ3 (note 
that there is a sign error in equation (10.10) of the 1st edition of Reference 23): 

where 

e ,= l  for n<N,, e,=O for n > N , .  

Equation (55) is a system of N , - 2  equations involving N, unknowns. Note that the even 
Chebyshev polynomial coefficients depend only on even Chebyshev polynomial coefficients and 
the odd Chebyshev polynomial coefficients depend only on odd Chebyshev polynomial coeffi- 
cients. The other two equations required to solve the system (55)  come from applying the 
Neumann boundary conditions (32). Expanding ni in a Chebyshev polynomial series and 
substituting into (32), one obtains upon some rearrangement a condition on the odd ni(n), 

and a condition on the even 7ti(n), 

N Y  

p = 2  
p w e n  

c p2i i i i i (p)=0.  (57) 
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Equations (55)-(57) are solved for the z,(n). Since the odd Chebyshev polynomial coefficients 
depend only on odd Chebyshev polynomial coefficients and the even Chebyshev polynomial 
coefficients depend only on even Chebyshev polynomial coefficients, these equations can be 
reduced to solving two systems of equations, one system for the NJ2+ 1 even Chebyshev 
polynomial coefficients and the second system for the Ny/2  odd Chebyshev polynomial coeffi- 
cients. Each linear system can be written in block matrix form: 

[; 3 

where A is a tridiagonal matrix, B is a column vector, C is a row vector and D is a scalar. This 
matrix is inverted by LU decomposition. Equation (58) is inverted for each (1, m) wave number 
for a total of N x N z / 2  inversions of an ( N y / 2 ) x ( N y / 2 )  matrix and N x N , / 2  inversions of an 
( N , / 2 +  1) x ( N y / 2  + 1) matrix. 

M is factored into LU: 

where I and u are the lu decomposition of A, q is a row vector where qu = C, p is a column vector 
where Ip = B, and d is a scalar where qp + d = D. The LU decomposition is set up in the following 
order. First, the lu decomposition of the tridiagonal matrix A is performed 

U =  

The first elements of d and u are solved by inspection and the rest of the elements of d,  u and 1 are 
solved by recursion. Secondly, the row vector q is solved directly by forward substitution since u is 
an upper triangular matrix. Thirdly, the column vector p is solved directly by forward substitu- 
tion since 1 is a lower triangular matrix. Fourthly, the scalar d is solved directly. Once the 
LU decomposition is set up, the solution of the unknown vector x is obtained by defining an 
intermediate vector z where Ux = z and obtaining its solution by forward substitution Lz = y. 
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Then the unknown vector x is obtained by backward substitution Ux = z. The total floating point 
operations required for setting up the LU decomposition and solving for x is 19N-30 for M 
defined to be N x N .  From our experience the inversion is not ill-conditioned. 

Substituting (30) into (27) and defining 
v N + 2 / 3  - N + 2 / 3  +,;+2/3 - Vi , 

we obtain 
yN+2/3 , y N +  113 -AtV$'+'  

N + 2 / 3 =  -AtVnt+' .  
V V  

The spectral expansions (42) are substituted into (60): 

u""2/3(1, n, m)=iiN+1/3(1, n, m)-At - fir+'(/, n, m), ( 2;-.) 

2At N y  
v"y++2/3(l, n, n1)=v"~+'/~(1, n, m)--  C p f r + + ( ( I ,  p, m), 

HG u = n + l  
p + n o d d  

ut"+2/3(l, n, m)=KJN+1/3(l, n, m)-At ( - 'Yzrn) fr+ ' (1 ,  n, m). 

(59) 

Equations (62) are solved directly for the inviscid part of the velocity field after the second 
(pressure) fractional step. 

The viscous pressure head must be computed from (33) and (34) before solving (59) for the 
velocity field after the second (pressure) fractional step. Expressing K, as a spectral expansion, 
a,(l,n,m) can be written as a linear combination of two linearly independent solutions of 
Laplace's equation (33): 

it,N+'(l, n , m ) = a ~ + ' ( l , m ) ~ , ( l , n , m ) + a ~ + ' ( l , m ) ~ , ( l , n , m ) .  (63) 
The Laplace solutions x1 and xz are calculated subject to arbitrary boundary conditions picked 
to ensure their linear independence: 

x l = l ,  x2=0 a ty=-H,  (64) 
x l = O ,  x 2 = 1  a ty=H.  (65) 

The Laplace solutions do not depend on the time step and are computed once. The Fourier 
modes a, ( l ,m)  and a,(l,m) are solved by applying the boundary conditions (34). Using (59), 
equation (36) becomes 

(66) 

0 = V * (1 - A C V ~ ) - ' V ~ + ~ / ~  + V '(1 - A ~ V ' ) - ' V ~ + ' / ~ ,  y = H. (67) 

AtV*(l-AtV2)-'Va~+'=V~(1-AtV2)-'~~++2/3, y =  &H.  (68) 

yN+ =(I  -AtV2)- ' yr+2/3 + (1 - AtV2)- ' 
From the condition ( 3 9 ,  

Substituting (61) and rearranging, 

Substituting the spectral expansion (63), equation (68) becomes 

AtV-(1-AtV2)- 'V[a1( l ,rn)~ , ( l ,  n,m)+a,(l, m)xz( l ,  n, m)]=V-(1-AtV2)-1vN+2/3,  y= +H. 
(69) 
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Note that this is two equations in two unknowns, a, and a,, for each (I, m) wave number and can 
be written as 

where 

bll(l,  m ) = A t V - ( l  -AtVZ)-'VXl(l, n, m) at y= -H, 

blz( l ,  r n ) = A t V * ( l - A t V z ) - ' V ~ , ( l ,  n, m) at y =  -H, 

bzl(l, m ) = A t V ~ ( 1 - A t V 2 ) - ' V X , ( l ,  n, m) at y = H ,  

bzz(l ,  m ) = A t V * ( l  -AtVZ)-'VXz(l, n, m )  at y = H ,  

dl(l, m ) = V - ( l - A t V 2 ) - ' v N + z / 3 ( l ,  n, m) at y =  -H, 

d2(I, m ) = V . ( l  - A t V Z ) - ' v ~ + z / 3 ( I ,  n, m )  at y = H .  

Equation (70) is trivial to solve. Note that the b( I, m) coefficients are computed only once and the 
d ( l ,  m) coefficients are computed every time step. Once the Fourier modes al(I, m )  and az( l ,  m), 
are computed, (63) is solved directly for the viscous pressure head. Then (59 ) is solved for the 
velocity field after the second (pressure) fractional step: 

~ i ~ + , / ~ ( l ,  n, m ) = u " ~ + z / 3 ( I ,  n, m ) - A t (  ? ) ; : + ' ( I ,  n, m), 

2At N y  
i j N + 2 / 3 ( l ,  n, m)=ijN+2/3(l, n, m)-- C p j i y + ' ( l , p ,  m), 

Hcn p = n + l  

5.3. Viscous diflusion fractional step 

(36), (37), (40) and (41). The form of these equations is 
The same solution procedure used for solving equations (31) and (32) is used to solve equations 

(1 -AtV2)r(x,  Y ,  z ) = f ( x ,  Y, z ) ,  (72) 
r (x ,  fH, z)=O, 

r ( x + & ,  y , z + R , ) = r ( x ,  y,z). 

(73) 

(74) 

The spectral representation (42) automatically satisfies (74). Upon substitution of (42) into (72) 
and (73), 

A t  N y  [ 1 +4n2At  (g +$)I ? ( I ,  n, m)-$ p ( p z  -nz)?(l, p ,  m) =f( I ,  n, m),  2< n < N , ,  (75) 
p = n + 2  

p + n even 

NY C F ( l ,  n, m)=O, 
n=O 

NY 

C (-l)n?(I,n,m)=O. 
n = O  

(77) 
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Equation (75) is rewritten (dropping the (I, m) dependence for notational convenience) as 

where 

This is the exact form of (54) and can be similarly converted into a nearly tridiagonal system of 
equations, (55). 

The boundary conditions (76) and (77) can be subtracted to give a condition for the odd I (  n), 
N,- 1 

1 i ( n ) = O ,  
II= 1 n odd 

and added to give a condition for the even r (n) ,  
NY c i ( n ) = O .  

n = O  
n even 

(79) 

As in Section 5.2, equations (78)-(80) can be written in the block matrix form (58) and are solved 
by the same procedure for u, u, w and 8 at time step N + 1. 

6. TURBULENT CHANNEL FLOW WITH HEAT TRANSFER 

The main input parameters for the simulation are the computational box lengths and the Prandtl 
number. The half-channel height fixes the Reynolds number for the hydrodynamics (equation 
(10)). The computational domain for the simulations was H =  150, A,= 1900 and 1,=950. The 
Prandtl number was fixed at 1.0 and the coefficient a defined in (16) was also 1.0. The only 
parameters that changed during the course of the simulation were the number of grid points and 
the size of the time step (Tables I and 11). The heat transfer calculation was not added until after 
the hydrodynamic simulation had progressed in time 12 500 wall units. The time step was kept as 
large as possible throughout each run in order to reach a stationary state quickly without 
violating the Courant condition (38). Once a stationary state was reached, the time step was 
dropped to between 0.2 and 0.25 to compute statistics. Statistical averages are only functions of 
the normal direction, so averages were taken over the x- and z-directions and in time. It was 
determined that the time step had little effect on the computed statistics. 

Table I. Computational grids 

Physical grid Spectral mode Effective grid spacing 

Run Ns N, N, N s  N, Nz Ax AY Az 

A 16 33 64 10 33 42 19QO 0.72-14.7 22.6 
B 32 65 128 21 65 85 90.5 0.18-7.4 11.2 
C 64 65 128 42 65 85 45.2 0.18-7.4 11.2 
D 128 65 128 85 65 85 22.4 0.18-7.4 11.2 
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Table 11. Simulation run times 

Time step 

Run Start Finish A t  Total simulation time 

A 0 8oooO 0005 400 
80000 250000 0.01 2100 

250000 270000 0.05 3100 
270000 300000 0.08 5500 
300000 340000 0.1 9500 
340000 44OOOO 0.05 14500 
440000 460000 0.2 18500 
46oooO 58oooO 0 3  54500 
58oooO 583000 0.2 55100 

B 581000 585000 0 2  55500 
585000 586000 0 5  56000 
586000 621000 0.4 7 m  

C 621000 630000 0.4 73600 
630000 630800 0.25 73800 

D 630000 648500 0.25 78225 

The initial condition for the flow field consisted of a mean parabolic profile for laminar flow 
with random velocity fluctuations superimposed upon it. The kinetic energy from the mean 
profile quickly transferred to the fluctuating velocity field, generating very large turbulent 
fluctuations. The time step during this period of the simulation had to be kept very small (0.005) in 
order to stabilize the integration. The mean velocity and turbulence intensities required an 
integration time of 12 500 (4OOOOO time steps) to reach a stationary state on the initial grid of 
33 792 points. Another 183 OOO time steps were integrated for a time of 42 600 in order to stabilize 
the higher-order statistics and to ensure a fully developed velocity and temperature field before 
interpolating up to more refined grids. The heat transfer calculation was started after the velocity 
field had been integrated for 400000 time steps. The initial condition was a mean conduction 
profile (T= - y )  with no fluctuations superimposed upon it. The turbulent velocity field quickly 
generated a turbulent temperature field. 

Three interpolations were performed during the course of this simulation. The wall shear stress 
would adjust for each new grid. At first it would drop to between 0.85 and 0.9, then rise slowly to 
oscillate around the steady state value of 1.0. The time required for this adjustment vaned for each 
interpolation. The wall shear stress for grid B adjusted within an integration time of 300. The 
adjustment required an integration time of 1400 for grid C and 3500 for grid D. The steady state 
Reynolds numbers (based on the half-channel height and either the centreline or bulk velocity) for 
each run are presented in Table I11 along with the centreline and bulk velocities. The wall heat 
flux also adjusted to a new steady state value on each grid. This is also presented in Table I11 
along with the Nusselt number 

The steady state velocity statistics obtained on the four grids are presented in Figures 2-11. 
Note that the legend for the physical grids presented on all the figures gives the resolution as 
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Table 111. Bulk average quantities 

A 1605 13-83 2407 2075 7.518 3007 
B 1604 13.84 2405 2076 7-729 30-92 
C 17.39 14.71 2609 2206 6.805 27.22 
D 17.85 15.08 2678 2262 6.341 25.36 

U 
3 
3 
. 16x33~64 grid, Re=2075 

32x65~128 grid, Re-2076 
64x65~128 grid, Re-2206 

Niederschulte(l988) Re=2457 
Niederschulte(l988) Re=2778 
Niederschulte(l988) Rez2776 

0.4 128x65~128 arid. Re=2262 

0.2 

0.0 - I .o -0.5 0.0 0.5 1 .o 

Figure 2. Mean velocity profiles across the channel 

N ,  x IVY x N, .  Grids B, C and D show the effect of streamwise resolution. For comparison 
purposes experimental data for the streamwise and normal velocity components from 
Niederschulte16 and experimental data for the spanwise velocity component from Kreplin 
and EckelmannZ6 are presented in the figures. 

The mean velocity is presented in Figures 2 and 3. Figure 2 presents the mean velocity 
normalized by the centreline velocity versus the co-ordinate y / H .  The profiles for grids A and B 
are flatter than those for grids C and D. This is due to the lower centreline velocity obtained using 
grids A and B. The profile for grid D is in good agreement with the experimental profiles of 
Niederschulte and is symmetric about the channel centreline. His profiles had a ratio of the mean 
centreline velocity to the mean bulk velocity, U,/Ub, of 1.16 and the simulated profile has a ratio 
of U& = 1.18. The skin friction coefficient 22,/(pU3 predicted by the simulation is 0.00879 
compared to 0.00832 from Niedershulte's run at Re = 2457. Figure 3 presents the mean velocity 
profile in wall co-lordinates for the viscous wall region. All four grids correctly give the viscous 
sublayer region where U + = y + for y + < 7, but give different results for the buffer region leading 
into the outer flow region. The profiles increase as the grid resolution increases. It is quite clear 
that increasing the resolution in the streamwise direction (from A x  = 905 to A x  =22.4) increases 
the velocity in the outer flow region. It is not clear that the mean velocity has converged as a 
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Figure 3. Mean velocity profiles in the viscous wall region 

function of grid resolution, though the profile for grid D has converged to that given by the 
experimental data. 

Figures4 and 5 present the root mean square of the turbulent velocity fluctuations. The 
streamwise and normal intensities in wall units are presented in Figure 4 and the spanwise 
intensity is presented in Figure 5. The results for the streamwise intensity varied on all four grids. 
The streamwise intensity predicted by grid A is higher than that predicted on the other three grids 
throughout the entire channel. A peak value of 2.84 is obtained at y + = 11.4 on grid A. Grids B, C 
and D predict peak values of 2.45,2.41 and 2.56 at y + = 14.4. The streamwise intensities for grids 
C and D agree for y + > 3 5  and are higher than that for grid B. It is not clear that the peak 
streamwise intensity has converged, but the location of the peak streamwise intensity appears to 
have converged to y + = 14.4. The normal intensity has clearly converged as a function of grid 
resolution. The normal intensity predicted by grid A is lower than that by grids B, C and D, which 
agree. The peak normal intensity on grid A is only 0702 at y +  =66.7, while those predicted by 
grids B, C and D are 0.792,0812 and 0.792 at y + = 49.3. The spanwise intensity predicted by grid 
A is also lower than that predicted by the higher-resolution grids. The value and location of the 
peak spanwise intensity vary on all four grids, so that it appears the solution of the spanwise 
intensity has not converged as a function of grid resolution. The values of the peak spanwise 
intensity and their locations of grids A, B, C and D are 0.987 at y + = 25-3, 1.055 at y + = 25-3, 
1.058 at y + = 29.5 and 1.039 at y + = 34.0. 

The normal intensity profile agrees remarkably well with the experimental data. The experi- 
mental results for both the streamwise the spanwise intensities are higher than that predicted by 
the simulation. The shape of the streamwise intensity profile agrees with the experimental results, 
including the location of the maximum, y + x 14. The spanwise intensities of Kreplin and 
Eckelmann measured by hot film anemometry are much higher than the simulation profile in the 
viscous wall region. Perry et ~ 1 . ~ ~  have determined that most of the data obtained in the near-wall 
region by standard double-wire techniques may contain significant error caused by cross- 
contamination. This error would result in higher measured values for the normal and spanwise 
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Figure 4. Streamwise and normal intensity profiles 
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Figure 5. Spanwise intensity profiles 

velocity components. Another possible explanation for the differences is that a secondary flow 
existed in the laboratory channel. 

The Reynolds stress term normalized with wall parameters is presented in Figure 6. The 
profiles for grids A, B and C agree for y + c 70. The peak value of grid D is lower compared to 
grids A, B and C. The peak values of the Reynolds stress and their locations for grids A, B, C and 
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Figure 6. Reynolds stress profiles 
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Figure 7. Wall behaviour of the turbulence intensities 

D are 0.701 at y + = 25.3,0.703 at y + = 29.5,0.701 at y + = 29.5 and 0.691 at y + = 29.5. The profile 
for grid D shows the correct linear shape in the outer region, indicating that the Reynolds stress 
has converged. The experimental results are slightly higher than the simulation results towards 
the channel centre, H + = 150, since the experiment was done at higher Reynolds number. 

Figure 7 shows the limiting behaviour at the wall for the turbulence intensities. The y + -  
behaviour of the streamwise and spanwise intensities and the y +'-behaviour of the normal 
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intensity are expected from the no-slip boundary condition and the continuity equation. The 
limiting behaviour for the streamwise intensity converged to 0 . 3 5 8 ~  + at the wall. The limiting 
behaviour predicted by grid A is much higher, 0429y + . The limiting behaviour for the normal 
intensity converged to 0-00929yfZ at the wall. The limiting behaviour predicted by grid A is 
clearly incorrect. This shows that 33 points in the normal direction are not enough to resolve the 
behaviour of the normal turbulent component at the wall. The normal grid spacing at the wall 
was only 0.72 for grid A compared to 0.18 for grids B, C and D. The limiting behaviour of the 
spanwise intensity at the wall converged to 0*193y+, a much lower value than predicted by 
grids A, B and C.  

Higher-order statistics were also computed and are compared with experimental measure- 
ments in Figures 8-11. Figure 8 shows the third-order moments (skewness or kortosis) of the 
streamwise and normal components of the fluctuating velocity, and Figures 9-11 show the 
fourth-order moments (flatness) of the streamwise, normal and spanwise fluctuating velocity 
components. The spanwise skewness is zero for fully developed turbulent channel flow. The 
experimental measurements of the streamwise and normal skewnesses shown in Figure 8 are 
significantly different from the Gaussian value of zero. The data have some scatter but the 
agreement with the computation is quite good (particularly in describing the locations of the zero 
crossings) over most of the channel. However, close to the wall the experimental data do not show 
the local minimum in the normal skewness that the simulation gives at y + z 12 and there is too 
much scatter in the measured streamwise skewness at the wall to make a comparison. The 
streamwise skewness in the centre of the channel and at the wall dropped as the grid resolution 
increased. The wall values for grids A, B, C and D are 1.24, 1.05, 1-01 and 0.919. The normal 
skewness increased for y + > 30 as the resolution increased. The maximum values and their 
locations for grids A, B, C and D are 0.297 at y + = 106.5,0.349 at y + = 1065,0.395 at y + = 99.5 
and 0.441 at y + =92.6. The limiting behaviour at the wall was incorrectly predicted on grid A. 
The wall values for grids B, C and D are -0~143,0~00811 and 0.419. 

Crl * 
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v . 

ri 

r 
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W . 
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u 3 / ( u*) "3 d 
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Figure 8. Streamwise and normal skewness profiles 
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Figure 10. Normal flatness profiles 

The calculated flatness profiles are compared with experimental data in Figures 9-1 1. Note 
that they are significantly different from the Gaussian value of three. The profile calculated for all 
grids agree fairly well, except at the wall. The streamwise flatness decreased at the wall as the 
resolution increased. The wall values of the streamwise flatness for grids A, B, C and D are 522, 
4-62, 4.52 and 4.32. The normal flatness increased dramatically at the wall as the resolution 
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Figure 11. Spanwise flatness profiles 

increased. The wall values of the normal flatness for grids A, B, C and D are 4.78, 8.47, 11.5 and 
16.5. The simulation of Kim et a1.12 gave a value of the normal flatness at the wall of 22. The 
spanwise flatness at the wall also increased as the resolution increased. The values of the spanwise 
flatness at the wall for grids A, B, C and D are 5.07, 5.71, 7.25 and 7.32. The spanwise velocity 
exhibits a near-Gaussian behaviour for y + > 20 and then climbs rapidly to an asymptote at 7.3 at 
the wall. This follows the trend of the experimental results and also agrees with the results of Kim 
et al. 

The steady state temperature statistics obtained on the four grids are presented in 
Figures 12-16. For comparison purposes the experimental data of Page et a1.'8*19 are also 
presented in the figures (referred to as 'Sage run x'). 

The mean temperature made dimensionless with the wall temperature and heat flux profiles are 
presented in Figure 12. The heat flux is constant across the channel. The heat flux did not reach a 
steady state on grid A and was close to steady state on grid B. The temperature profiles for grids A 
and B are quite different from those for grids C and D (which agree fairly well) in that they have a 
larger slope near the wall and are flatter through the core of the channel. The mean temperature 
profile for grid D is in fairly good agreement with the results of Page et d.'* at the bottom wall 
and, unlike the experimental data, is symmetric when rotated 180" about the channel centreline. It 
appears that the temperature profile converged, though it is not clear that the heat flux converged 
(see Table 111). 

Figure 13 presents the mean temperature normalized with wall parameters. The computations 
with different grids agree at the wall but differ in the centre of the channel. This is because the 
value of the heat flux is still varying with grid resolution. The Nusselt number of 25.36 predicted 
by the simulation on grid D is in excellent agreement with the data obtained at Reynolds numbers 
equal to 2340 and 2245. Page et al.'s data18 from both sides of the channel are shown in Figure 13. 
The agreement of the calculations with grid D and data from runs 45 and 46 is good for y + > 30. 
The disagreement with run 40 is due to a Reynolds number effect, since this experiment was 
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Figure 12. Mean temperature and heat flux profiles across the channel 
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Figure 13. Mean temperature profiles 

performed at a Reynolds number twice that of the simulation. A conduction region has to exist 
close to the wall where the ordinates and abscissae are equal. The computations predict this 
behaviour for y +  < 5. The experimental data are wrong in this region. This may indicate that the 
measurement of the total heat flux or of the wall temperature was too high. 
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Figure 14 presents the eddy conductivity normalized by the half-channel height and the skin 
friction velocity, where Ec is defined as 

The profiles are not smooth or symmetric, because the numbers of samples in the averages were 
inadequate and because the temperature field had not reached a steady state on grids A and B. All 
the eddy conductivity profiles, however, do have the correct shape. The centreline eddy conduct- 
ivity dropped from 0-121 on grid A to 0.0728 on grid D and the maximum eddy conductivity at 
y l H x 0 . 5  converged to approximately 0-095. The profile for run D agrees fairly well with the 
experimental data of Page et al.19 in the viscous wall region but falls below the experimental data 
in the channel core. Page et al. computed the eddy conductivity by subtracting the molecular 
conductivity from the total heat flux, not by measuring the temperature-normal velocity 
correlation. If their heat flux was incorrectly measured and was high, as indicated by Figure 13, 
then that would explain why their eddy conductivities are higher than that predicted by the 
simulation. Johnk and HanrattyZ8 reported ( E c +  k) /au* ~ 0 . 0 8 1  near the centre of a pipe for the 
fully developed heat transfer region. This is in good agreement with the channel core values 
predicted by the simulation. 

Figure 15 presents the calculated results of the root mean square of the temperature fluctuation 
normalized with wall parameters. Unlike the velocity intensities, the temperature intensities do 
not decrease in the channel core but reach a maximum at the channel centreline. This arises 
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Figure 14. Eddy conductivity profiles 
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Figure 16. Wall behaviour of the temperature intensity and temperature-velocity correlation 
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because the different boundary conditions imposed on the temperature and velocity fields at the 
walls cause a large temperature gradient but a very small velocity gradient in the channel core. 
There is a local maximum in the temperature intensity in the viscous wall region at y + w 17 which 
is to be compared with the maximum in the streamwise velocity intensity which occurs at y + x 14. 
The temperature intensities obtained with grid A are significantly larger than for the other three 
grids. The results for grids C and D are different because of the different values of the wall heat 
flux used in the normalization. The peak values of the temperature intensity in the buffer region 
for grids A, B, C and D are 3.47, 3.13, 294 and 3.13 at y + = 17.7. The values of the centreline 
temperature intensity for grids A, B, C and D are 3.71, 3.06, 3-26 and 3.49. 

Figure 15 also presents the temperature-velocity correlation normalized with wall parameters. 
Grids A and B were not at steady state. Grids C and D have converged and show the proper 
behaviour, reaching a near-constant value of 0.95 in the outer flow region. 

Figure 16 shows the limiting behaviour at the wall for the temperature intensity and 
temperature-velocity correlation. The near-wall behaviour for the temperature intensity con- 
verged to 0-397 (Pr) y +. The near-wall behaviour for the temperature-velocity correlation is 
incorrectly predicted on grid A owing to its inability to resolve the near-wall normal velocity 
(see Figure 7). The near-wall behaviour for the temperature-velocity correlation converged to 
about 0.000775 [ (Pr) y + ] 3. 

7. CONCLUSIONS 

A computer programme which combines the Orszag-Kells7 time-splitting algorithm and the 
Marcusg viscous correction has been developed to simulate the time-dependent three-dimen- 
sional turbulent velocity field for fully developed flow in a channel at low Reynolds number. In 
addition, a fractional time step method developed by Circelli and McLaughlin14 is used in 
conjunction with the velocity code to calculate the three-dimensional time-dependent temper- 
ature field when heat is being transferred from one wall of the channel to the other. 

Statistical properties of the turbulence for this flow vary only with distance from the wall and 
not in the streamwise and spanwise directions. Calculated mean velocities, mean temperatures 
and moments of the turbulence agree with laboratory measurements by Niederschulte16 and 
by Corcoran, Page and co-workers. ”- l9 The calculations with different mesh sizes and the 
comparison with experiment suggest that the computation converged reasonably well with a 
128 x 65 x 128 grid. A surprising aspect of these results is that a good approximation to the flow 
and temperature field is obtained with 64 x 65 x 128 and the 32 x 65 x 128 coarse grids. Some of 
the differences between the calculated results and the experimental measurements can be ascribed 
to errors in the measurements. For example, a plot in the form shown in Figure 13 indicates that 
there was an error in the measurements of the heat transfer rate or the wall temperature. 
However, it is not clear whether differences in the moments of the turbulent velocity field close to 
the wall are due to numerical grid effects or measurement errors. A possible source of experi- 
mental error is that smoothing operations used by Niederschultei6 in analysing his laser Doppler 
signals could have resulted in his missing the intermittancy at the wall suggested by the computed 
large values of the flatness. 

The results presented in this paper show that, in spite of the remarkable improvements in both 
computer hardware and software over the last decade, there are still unresolved issues surround- 
ing the use of direct numerical simulation as a tool for turbulence research. The simulations are 
probably most reliable for processes that are not strongly affected by the highly intermittent 
character of the normal component of the velocity in the viscous sublayer. The use of periodic 
boundary conditions may also have some influence on the results, since the simulations reveal the 



COMPUTER SIMULATION OF TURBULENT CHANNEL FLOW 1027 

presence of coherent regions of streamwise velocity fluctuations and Reynolds stress that persist 
from one end of the computational box to the other even though all the two-point correlation 
functions become negligibly small at streamwise separations less than 950( ,1,/2).~’ It is an open 
question whether such coherence may persist over arbitrarily large distances in the downstream 
direction. It is also conceivable that the periodic boundary conditions may play some role in the 
large values of the normal flatness factors near the wall by recycling strong disturbances that 
might otherwise not reappear in a given region for a long period of time. However, these issues 
will be difficult and expensive to resolve, since one must perform simulations with considerably 
larger periodicity lengths to assess their influence. 

It is interesting and important to note that, with the exception of the normal direction, the grid 
spacings used in the simulations reported in the present paper are larger than the Kolmogorov 
length scale. In fact, even on grid D the grid spacing in the streamwise direction is an order of 
magnitude larger than the Kolmogorov scale. The fact that the simulations reproduce the correct 
statistical behaviour, at least for low-order moments, suggests that the neglected length scales are 
unimportant except possibly for disturbances which are statistically unlikely. This result is 
fortunate, since even with the most powerful present-day computers it is not feasible to perform 
simulations of the type discussed in the present paper in which the grid spacings are all smaller 
than the Kolmogorov scale and, at the same time, all of the large scales in the flow are correctly 
described. 

The heat transfer simulations reported in this paper are an example of the kind of use for which 
direct numerical simulation can provide valuable information that would be very difficult to 
obtain with existing experimental techniques. Direct simulation, for example, allows one to 
construct a detailed energy balance in order to determine the relative importance of various 
transport processes.30 The corresponding laboratory measurements are, in principle, feasible, but 
formidable in practice. Lagrangian particle-tracking experiments are another example of how 
direct simulation can provide valuable information that is otherwise difficult to obtain. The 
results of such a study for aerosol particles were recently reported by one of us.31 
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